Changeset 9152


Ignore:
Timestamp:
May 5, 2011, 11:30:48 AM (14 years ago)
Author:
rick
Message:

Signal is not normalized so make it so. Also the starting transparancy should
be related to the initial entry field.

While we are here, explaining in-depth the issues we are facing when plotting
the data.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/django_gheat/website/tile.py

    r9151 r9152  
    197197  # copy the raw reported values
    198198  MAX_SIGNAL = 50
     199  # XXX: The radius relates to the zoom-level we are in, and should represent
     200  # a fixed distance, given the scale. Assume signal/distance to be lineair
     201  # such that signal 100% = 100m and 1% = 1m.
     202  #
     203  # XXX: The relation is not lineair but from a more logeritmic scape, as we
     204  # are dealing with radio signals
     205  #
     206  MAX_RANGE = 100
    199207 
    200208  def dif(x,y):
     
    211219    log.info(meting.accespoint.ssid, meting.latitude, meting.longitude, xcoord, ycoord)
    212220
    213     # XXX: The radius relates to the zoom-level we are in, and should represent
    214     # a fixed distance, given the scale. Assume signal/distance to be lineair
    215     # such that signal 100% = 100m and 1% = 1m.
     221    # TODO: Please note that this 'logic' technically does apply to WiFi signals,
     222    # if you are plotting from the 'source'. When plotting 'measurement' data you
     223    # get different patterns and properly need to start looking at techniques like:
     224    # Multilateration,Triangulation or Trilateration to recieve 'source' points.
    216225    #
    217     # XXX: The relation is not lineair but from a more logeritmic scape, as we
    218     # are dealing with radio signals
     226    # Also you can treat all points as seperate and use techniques like
     227    # Multivariate interpolation to make the graphs. A nice overview at:
     228    #     http://en.wikipedia.org/wiki/Multivariate_interpolation
    219229    #
    220     # TODO: Please note that this 'logic' technically does any apply to WiFi signals,
    221     # if you are plotting from the 'source'. With measured data you get
    222     # different patterns.
    223     #
    224     im.add_circle((xcoord,ycoord),float(meting.signaal) / meters_per_pixel,(255,0,0),MAX_SIGNAL - meting.signaal)
     230    # One very intersting one to look at will be Inverse distance weighting
     231    # with examples like this:
     232    # http://stackoverflow.com/questions/3104781/inverse-distance-weighted-idw-interpolation-with-python
     233    signal_normalized = MAX_RANGE - (MAX_SIGNAL - meting.signaal)
     234    im.add_circle((xcoord,ycoord),float(signal_normalized) / meters_per_pixel,(255,0,0), MAX_SIGNAL - meting.signaal)
    225235 
    226236  log.info("BoundingBox NW: %s" % nw_deg)
Note: See TracChangeset for help on using the changeset viewer.