[9147] | 1 | #!/usr/bin/env python
|
---|
| 2 | #
|
---|
[9150] | 3 | # Hack to show image generation realtime, sample tile server implementation.
|
---|
[9147] | 4 | #
|
---|
| 5 | # Rick van der Zwet <info@rickvanderzwet.nl>
|
---|
| 6 | from django.core.management import setup_environ
|
---|
[9151] | 7 | from django.db.models import Max
|
---|
[9147] | 8 | from django.http import HttpResponse
|
---|
[9392] | 9 | from django.views.decorators.cache import cache_page
|
---|
[9147] | 10 | from gheat.models import *
|
---|
[9549] | 11 | import os
|
---|
[9149] | 12 | import pygame
|
---|
[9147] | 13 | import sys
|
---|
[9148] | 14 | import tempfile
|
---|
[9184] | 15 | import time
|
---|
[9147] | 16 |
|
---|
[9150] | 17 | # Rending with PIL and computation with numpy has proven to be to slow to be
|
---|
| 18 | # usable, but is still in here for refence purposes.
|
---|
| 19 | try:
|
---|
| 20 | from PIL import Image
|
---|
| 21 | import ImageDraw
|
---|
| 22 | import numpy as np
|
---|
| 23 | except ImportError:
|
---|
| 24 | pass
|
---|
| 25 |
|
---|
[9148] | 26 | class PyGamePicture():
|
---|
| 27 | """ Basic PyGame class, allowing simple image manipulations """
|
---|
| 28 | def __init__(self, method, size):
|
---|
| 29 | self.surf = pygame.Surface(size,flags=pygame.SRCALPHA)
|
---|
[9147] | 30 |
|
---|
[9149] | 31 | def center_crop(self,size):
|
---|
| 32 | """ Resize to make centered rectange from image """
|
---|
| 33 | new_surf = pygame.Surface(size, flags=pygame.SRCALPHA)
|
---|
| 34 | curr_size = self.surf.get_size()
|
---|
| 35 | new_surf.blit(self.surf,(0,0),
|
---|
| 36 | ((curr_size[0] - size[0]) / 2, (curr_size[1] - size[1]) / 2, size[0], size[1]))
|
---|
| 37 | self.surf = new_surf
|
---|
| 38 |
|
---|
[9549] | 39 | def save_and_get_image(self,filename):
|
---|
| 40 | """ Save the file to the location and return the file """
|
---|
| 41 | basedir = os.path.dirname(filename)
|
---|
| 42 | if not os.path.isdir(basedir):
|
---|
| 43 | os.makedirs(basedir)
|
---|
| 44 | pygame.image.save(self.surf,filename)
|
---|
| 45 | return open(filename,'r').read()
|
---|
[9147] | 46 |
|
---|
[9184] | 47 | def get_image(self,format='png'):
|
---|
| 48 | f = tempfile.NamedTemporaryFile(suffix=format)
|
---|
| 49 | pygame.image.save(self.surf,f.name)
|
---|
| 50 | f.seek(0)
|
---|
| 51 | return f.read()
|
---|
[9147] | 52 |
|
---|
[9184] | 53 |
|
---|
[9549] | 54 |
|
---|
[9151] | 55 | def add_circle(self, center, radius, colour=(255,0,0), transparancy=0):
|
---|
| 56 | """
|
---|
| 57 | Hack to add lineair gradient circles and merge with the parent. The
|
---|
| 58 | transparancy can be configured to make the circles to fade out in the
|
---|
| 59 | beginning
|
---|
| 60 | """
|
---|
| 61 | # Make calculations and ranges a whole bunch more easy
|
---|
| 62 | radius = int(math.ceil(radius))
|
---|
| 63 |
|
---|
[9149] | 64 | new_surf = pygame.Surface(self.surf.get_size(),flags=pygame.SRCALPHA)
|
---|
[9151] | 65 | alpha_per_radius = float(2.55 * (100 - transparancy)) / radius
|
---|
[9148] | 66 | for r in range(radius,1,-1):
|
---|
[9174] | 67 | alpha = min(255,int((radius - r) * alpha_per_radius))
|
---|
| 68 | combined_colour = colour + (alpha,)
|
---|
| 69 | pygame.draw.circle(new_surf,combined_colour,center,r,0)
|
---|
[9148] | 70 | self.surf.blit(new_surf,(0,0),special_flags=pygame.BLEND_RGBA_MAX)
|
---|
| 71 |
|
---|
| 72 |
|
---|
| 73 | class PILPicture():
|
---|
| 74 | """ Basic PIL class, allowing simple image manipulations """
|
---|
[9147] | 75 | im = None
|
---|
| 76 | def __init__(self, method, size):
|
---|
| 77 | self.im = Image.new(method, size)
|
---|
| 78 | self.data = np.array(self.im)
|
---|
| 79 |
|
---|
[9148] | 80 | def write(self,fh,format='png'):
|
---|
| 81 | self.im.save(fh,format)
|
---|
[9147] | 82 |
|
---|
[9148] | 83 | def make_circle(self,draw, center, radius,colour=(0,255,0)):
|
---|
| 84 | """ Cicle gradient is created by creating smaller and smaller cicles """
|
---|
| 85 | (center_x, center_y) = center
|
---|
| 86 | for i in range(0,radius):
|
---|
| 87 | draw.ellipse(
|
---|
| 88 | (center_x - radius + i,
|
---|
| 89 | center_y - radius + i,
|
---|
| 90 | center_x + radius - i,
|
---|
| 91 | center_y + radius - i
|
---|
| 92 | ),
|
---|
| 93 | colour +(255 * i/(radius * 2),)
|
---|
| 94 | )
|
---|
| 95 |
|
---|
[9147] | 96 | def add_circle(self, center, radius, colour):
|
---|
| 97 | """ Adding a new cicle is a matter of creating a new one in a empty layer
|
---|
| 98 | and merging it with the current one
|
---|
| 99 |
|
---|
| 100 | XXX: Very heavy code, should actually only work on the data arrays, instead
|
---|
| 101 | of doing all the magic with high-level images """
|
---|
| 102 |
|
---|
| 103 | im_new = Image.new("RGBA", self.im.size)
|
---|
| 104 | draw = ImageDraw.Draw(im_new)
|
---|
[9148] | 105 | self.make_circle(draw, center, radius, colour)
|
---|
[9147] | 106 |
|
---|
| 107 | data2 = np.array(im_new)
|
---|
| 108 |
|
---|
| 109 | # Add channels to make new images
|
---|
| 110 | self.data = self.data + data2
|
---|
| 111 | self.im = Image.fromarray(self.data)
|
---|
| 112 |
|
---|
| 113 |
|
---|
| 114 |
|
---|
| 115 | class LatLonDeg():
|
---|
| 116 | """ Helper class for coordinate conversions """
|
---|
| 117 | def __init__(self,lat_deg, lon_deg):
|
---|
| 118 | self.lat = lat_deg
|
---|
| 119 | self.lon = lon_deg
|
---|
| 120 | def __str__(self):
|
---|
| 121 | return "%.5f,%.5f" % (self.lat, self.lon)
|
---|
| 122 |
|
---|
| 123 | def deg_per_pixel(self,other,pixel_max):
|
---|
| 124 | return(LatLonDeg(abs(self.lat - other.lat) / pixel_max, abs(self.lon - other.lon) / pixel_max))
|
---|
| 125 |
|
---|
| 126 |
|
---|
| 127 |
|
---|
| 128 | # Convertions of tile XYZ to WSG coordinates stolen from:
|
---|
| 129 | # http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
|
---|
| 130 | # <stolen>
|
---|
| 131 | import math
|
---|
| 132 | def deg2num(lat_deg, lon_deg, zoom):
|
---|
| 133 | lat_rad = math.radians(lat_deg)
|
---|
| 134 | n = 2.0 ** zoom
|
---|
| 135 | xtile = int((lon_deg + 180.0) / 360.0 * n)
|
---|
| 136 | ytile = int((1.0 - math.log(math.tan(lat_rad) + (1 / math.cos(lat_rad))) / math.pi) / 2.0 * n)
|
---|
| 137 | return(xtile, ytile)
|
---|
| 138 |
|
---|
| 139 | def num2deg(xtile, ytile, zoom):
|
---|
| 140 | n = 2.0 ** zoom
|
---|
| 141 | lon_deg = xtile / n * 360.0 - 180.0
|
---|
| 142 | lat_rad = math.atan(math.sinh(math.pi * (1 - 2 * ytile / n)))
|
---|
| 143 | lat_deg = math.degrees(lat_rad)
|
---|
| 144 | return(LatLonDeg(lat_deg,lon_deg))
|
---|
| 145 | # </stolen>
|
---|
| 146 |
|
---|
| 147 |
|
---|
| 148 | def boundbox_deg(x,y,z):
|
---|
| 149 | """ Calculate the boundingbox for a image """
|
---|
| 150 | return (num2deg(x,y,z), num2deg(x+1,y+1,z))
|
---|
| 151 |
|
---|
| 152 |
|
---|
| 153 |
|
---|
[9166] | 154 | def make_tile(x,y,z,filter={},colour=(255,0,0)):
|
---|
[9150] | 155 | """
|
---|
| 156 | Crude attempt to generate tiles, by placing a gradient circle on a
|
---|
[9149] | 157 | coordinate point. Generate a larger tile and make sure to plot related
|
---|
| 158 | points first and then crop it to the required size (250x250).
|
---|
[9148] | 159 |
|
---|
| 160 | Many stuff NOT implemented yet, like:
|
---|
[9150] | 161 | - Caching Images.
|
---|
| 162 | - Conditional Filtering of Meting to allow display of sub-results.
|
---|
| 163 | - Defining a extra level of transparency if you like to layer multiple tiles
|
---|
| 164 | on top of each-other.
|
---|
| 165 | - Color variation, allow the user to dynamically choose a the colour the
|
---|
| 166 | points to be.
|
---|
| 167 | - Advanced data plotting, like trying to guess the remainder points.
|
---|
[9147] | 168 | """
|
---|
[9150] | 169 |
|
---|
[9149] | 170 | SIZE = 250
|
---|
| 171 |
|
---|
[9147] | 172 | nw_deg,se_deg = boundbox_deg(x,y,z)
|
---|
[9149] | 173 |
|
---|
[9147] | 174 |
|
---|
[9148] | 175 | Picture = PyGamePicture
|
---|
[9149] | 176 | resolution_deg = nw_deg.deg_per_pixel(se_deg, SIZE)
|
---|
| 177 | # Converting LatLon to Meters is discussed here:
|
---|
| 178 | # http://stackoverflow.com/questions/3024404/transform-longitude-latitude-into-meters
|
---|
| 179 | tile_height = float(40008000) / (2 ** z)
|
---|
| 180 | meters_per_pixel = float(tile_height) / SIZE
|
---|
[9147] | 181 |
|
---|
[9149] | 182 | # Worst case scenario could a circle with 100% 'outside' our 250x250 range
|
---|
| 183 | # also add data to the picture as circles are used
|
---|
| 184 | border_pixels = 100 / meters_per_pixel / 2
|
---|
| 185 |
|
---|
| 186 | im = Picture("RGBA", (SIZE + border_pixels * 2,) * 2)
|
---|
| 187 |
|
---|
| 188 | nw_deg.lat += resolution_deg.lat * border_pixels
|
---|
| 189 | nw_deg.lon -= resolution_deg.lon * border_pixels
|
---|
| 190 | se_deg.lat -= resolution_deg.lat * border_pixels
|
---|
| 191 | se_deg.lon += resolution_deg.lon * border_pixels
|
---|
| 192 |
|
---|
[9147] | 193 | lat_min = 999
|
---|
| 194 | lon_min = 999
|
---|
| 195 | lat_max = 0
|
---|
| 196 | lon_max = 0
|
---|
[9166] | 197 |
|
---|
[9577] | 198 | for key in filter.keys():
|
---|
| 199 | if filter[key] == 'all':
|
---|
| 200 | del filter[key]
|
---|
| 201 |
|
---|
[9166] | 202 | filter.update({
|
---|
| 203 | 'latitude__lte' : nw_deg.lat,
|
---|
| 204 | 'latitude__gte' : se_deg.lat,
|
---|
| 205 | 'longitude__lte' : se_deg.lon,
|
---|
| 206 | 'longitude__gte' : nw_deg.lon
|
---|
| 207 | })
|
---|
[9549] | 208 | # Limit such that high level zooms does not get the whole database
|
---|
[9571] | 209 | metingen = Meting.objects.filter(**filter).order_by('?')[:1000].values_list('latitude', 'longitude', 'signaal')
|
---|
[9151] | 210 |
|
---|
| 211 | # XXX: Signal is not normalized in the database making it unknown when a
|
---|
| 212 | # signal is said to be 100% or when it is actually less, currently seems to
|
---|
| 213 | # copy the raw reported values
|
---|
| 214 | MAX_SIGNAL = 50
|
---|
[9152] | 215 | # XXX: The radius relates to the zoom-level we are in, and should represent
|
---|
| 216 | # a fixed distance, given the scale. Assume signal/distance to be lineair
|
---|
| 217 | # such that signal 100% = 100m and 1% = 1m.
|
---|
| 218 | #
|
---|
| 219 | # XXX: The relation is not lineair but from a more logeritmic scape, as we
|
---|
| 220 | # are dealing with radio signals
|
---|
| 221 | #
|
---|
| 222 | MAX_RANGE = 100
|
---|
[9147] | 223 |
|
---|
| 224 | def dif(x,y):
|
---|
[9150] | 225 | """ Return difference between two points """
|
---|
[9147] | 226 | return max(x,y) - min(x,y)
|
---|
| 227 |
|
---|
[9549] | 228 | for (latitude, longitude, signaal) in metingen:
|
---|
| 229 | lat_min = min(lat_min, latitude)
|
---|
| 230 | lat_max = max(lat_max, latitude)
|
---|
| 231 | lon_min = min(lon_min, longitude)
|
---|
| 232 | lon_max = max(lon_max, longitude)
|
---|
| 233 | xcoord = int(dif(nw_deg.lon,longitude) / (resolution_deg.lon))
|
---|
| 234 | ycoord = int(dif(nw_deg.lat,latitude) / (resolution_deg.lat))
|
---|
[9150] | 235 |
|
---|
[9152] | 236 | # TODO: Please note that this 'logic' technically does apply to WiFi signals,
|
---|
| 237 | # if you are plotting from the 'source'. When plotting 'measurement' data you
|
---|
| 238 | # get different patterns and properly need to start looking at techniques like:
|
---|
| 239 | # Multilateration,Triangulation or Trilateration to recieve 'source' points.
|
---|
[9148] | 240 | #
|
---|
[9152] | 241 | # Also you can treat all points as seperate and use techniques like
|
---|
| 242 | # Multivariate interpolation to make the graphs. A nice overview at:
|
---|
| 243 | # http://en.wikipedia.org/wiki/Multivariate_interpolation
|
---|
[9150] | 244 | #
|
---|
[9152] | 245 | # One very intersting one to look at will be Inverse distance weighting
|
---|
| 246 | # with examples like this:
|
---|
| 247 | # http://stackoverflow.com/questions/3104781/inverse-distance-weighted-idw-interpolation-with-python
|
---|
[9549] | 248 | signal_normalized = MAX_RANGE - (MAX_SIGNAL - signaal)
|
---|
| 249 | im.add_circle((xcoord,ycoord),float(signal_normalized) / meters_per_pixel,colour, MAX_SIGNAL - signaal)
|
---|
[9184] | 250 | #im.add_point((xcoord,ycoord),float(signal_normalized) / meters_per_pixel,colour, MAX_SIGNAL - meting.signaal)
|
---|
[9147] | 251 |
|
---|
[9149] | 252 | im.center_crop((SIZE,SIZE))
|
---|
[9147] | 253 | return im
|
---|
| 254 |
|
---|
[9549] | 255 | def pre_process_tile(request,zoom,x,y):
|
---|
[9392] | 256 | filter = {}
|
---|
| 257 | colour = (255,0,0)
|
---|
| 258 | for key, value in request.GET.iteritems():
|
---|
| 259 | if key == 'colour':
|
---|
| 260 | colour = tuple(map(int,value.split(',')))
|
---|
| 261 | else:
|
---|
| 262 | filter[key] = value
|
---|
| 263 | now = time.time()
|
---|
| 264 | im = make_tile(int(x),int(y),int(zoom),filter=filter,colour=colour)
|
---|
[9549] | 265 | return im
|
---|
| 266 |
|
---|
| 267 | # Create your views here.
|
---|
[9572] | 268 | # N.B: This cache is handly is you are using in standalone mode
|
---|
| 269 | #@cache_page(60 * 60 * 24, cache="tile_cache")
|
---|
[9549] | 270 | def serve_tile(request,zoom,x,y):
|
---|
| 271 | im = pre_process_tile(request,zoom,x,y)
|
---|
[9392] | 272 | data = im.get_image('png')
|
---|
[9549] | 273 | return HttpResponse(data,mimetype="image/png")
|
---|
[9188] | 274 |
|
---|
[9549] | 275 | def fixed_wl_only(request,zoom,x,y):
|
---|
| 276 | """ Pre-render and save attempt """
|
---|
| 277 | im = pre_process_tile(request,zoom,x,y)
|
---|
| 278 | data = im.save_and_get_image('/usr/local/var/django/tile/fixed/wl-only/%s/%s,%s.png' % (zoom, x, y))
|
---|
| 279 | return HttpResponse(data,mimetype="image/png")
|
---|